top of page
Free software to download (for research purposes)
and material accompanying my latest book:
​
The software is provided under the GNU license for Research purposes only (for commercial use - please, contact Prof. Angelov, Lancaster University; the open source code does NOT provide rights to use the software (and patented IP methods for any commercial purposes without a license agreement with Lancaster University). In any publication when using the software and the methods, please, make appropriate references to avoid plagiarism claims. 

​

A. xDNN code @ GitHub

​

​

​

B. Accompanying material to my latest book 

"Empirical Approach to Machine Learning"

Springer, 2018, ISBN 9783030023836; DOI 10.1007/978-3-030-02384-3

(for the URL - please, press the book image)  

   

    B1. Lecture Notes (10 set of slides) and 5 Lab session notes forming a course

​

​

​

​

   

   B2. The software accompanying the book can be downloaded from the 

​

​

(see also the hyperlinks below to specific algorithms/functions)     

​

C. ALMMo (Autonomous Learning Multi-Model) Systems family:

​

​

​​​

​

​

​

  • DRB Classifier

​

​

  • Semi-supervised DRB (SS-DRB) Classifier

​

​

  • Autonomous Data Partitioning (ADP) Algorithm

​

​

  • Self-Organising Fuzzy Logic Classifier

​

​

  • SODA (Self-organising Direction-aware) Partitioning

​

​

D. Empirical Fuzzy Sets (EFS) software

​

​

E. Autonomous Anomaly Detection Algorithm

​

​

F. Autonomous Data-Density-based (ADD) Clustering

​

​

G. Autonomous Data-Driven Clustering for Streaming Data

​

​

H. TEDA Clustering - parallel version

​

​

​

I. EST Matlab package can be received upon request and includes:

​

  • eTS+ (2001-2010)

​

  • eClass (2006-2008)

​

  • eClustering 

​

  • RDE (2001-2010)

bottom of page