Selected Publications in top journals
-
IEEE Transactions on Pattern Analysis and Machine Intelligence, TPAMI (IF 20.8)
X. Gu, P. P. Angelov, C. Zhang, P. M. Atkinson, A Semi-Supervised Deep Rule-Based Approach for Complex Satellite Sensor Image Analysis, vol. 44(5): 2281-2292, DOI: 10.1109/TPAMI.2020.3048268, May 2022
-
Nature Protocols (17.5)
J. Trevisan, P. P. Angelov, P. L. Carmichael, A. D. Scott and F. L. Martin, A computational protocol and software implementation (as a MATLAB application) for biomarker identification in infrared spectroscopy datasets, May 2010, DOI: 10.1038/nprot.2010.97.
-
Information Fusion (IF 14.8)
X. Gu, C. Zhang, Q. Shen, J. Han, P.P. Angelov, P.M. Atkinson, A Self-Training Hierarchical Prototype-based Ensem-ble Framework for Remote Sensing Scene Classification, vol.80, 179-204, April 2022.
-
AI Review (IF 11.7)
X. Gu, J. Han, Q. Shen, P. Angelov, Autonomous Learning for Fuzzy Systems: a review, vol. 56: 7549-7595, 2023,
DOI 10.1007/s10462-022-10355-6.
-
IEEE Transactions on Fuzzy Systems (IF 10.7)
P. Angelov, R. Buswell, Identification of Evolving Rule-based Models, vol. 10 (5): 667-677, 2002.
P. Angelov, X. Zhou, Evolving Fuzzy-Rule-based Classifiers from Data Streams, vol. 16(6): 1462-1475, 2008, highly cited, nominated for Outstanding Transactions paper (2008)
P. Angelov, X. Gu, J. Principe, Autonomous learning multi-model systems from data streams, vol. 26(4): 2213-2224, Aug. 2018.
H.-J. Rong, P. Angelov, X. Gu, J. Bai, Stability of Evolving Fuzzy Systems based on Data Clouds, vol. 26(5): 2774-2784, Oct. 2018.
E. Soares, P. Angelov, M. P. G. Castro, S. Nageshrao, B. Costa, D. Filev, Explaining Deep Learning Models Through Rule-Based Approximation and Visualization, vol.29 (8): 2399-2407, DOI: 10.1109/TFUZZ.2020.2999776, Aug. 2021.
-
IEEE Transactions on Neural Networks (IF 10.2)
J. de Jesús Rubio, P. Angelov, E. García, An uniformly stable backpropagation algorithm to train a feedforward neural network, vol. 22(3): 356-366, 2011.
-
IEEE Transactions on Cybernetics (IF 9.4)
P. Angelov, X. Gu, J. Principe, A generalized methodology for data analysis, vol. 48(10): 2981-2993, Oct. 2018.
P. Angelov, Fuzzily Connected Multi-Model Systems Evolving Autonomously from Data Streams, vol. 41(4): 898-910, 2011.
J. Iglesias, P. Angelov, A. Ledezma, A. Sanchis, Creating evolving user behavior profiles automatically, vol. 24(5): 854-867, 2012.
C. Xydeas, P. Angelov, S. Chiao and M. Reoullas, Advances in EEG Signals Classification via Dependant HMM models and Evolving Fuzzy Classifiers, vol. 36 (10): 1064-1083, 2006.
J. A. Iglesias, P. Angelov, A. Ledezma, A. Sanchis, Human Activity Recognition based on Evolving Fuzzy Systems, vol. 20(5): 355-364, 2010.
P. P. Angelov, E. A. Soares, R. Jiang, N. I. Arnold, P. M. Atkinson, Explainable artificial intelligence: an analytical review, DOI:10.1002/widm.1424, published online 12 July 2021.
-
Neural Networks (IF 6.0)
E. A. Soares, P. Angelov, Towards Explainable Deep Neural Networks (xDNN), vol. 130: 185-194, Oct. 2020, 350+ citations
-
Information Sciences (IF 5.91)
P. Angelov, X. Gu, Deep rule-based classifier with human-level performance and characteristics, vol. 463-464: 196-213, October 2018.
P. Angelov, R. Yager, Density-based Averaging - a new Operator for Data Fusion, vol. 222: 163-174, 2013.
-
Neurocomputing (IF 5.5)
D. Kangin, P. Angelov, Z. Zhang, IDEAL: Interpretable-by-Design ALgorithms for learning from foundation feature spaces, vol. 626, 14 April 2025, DOI: 10.1016/j.neucom.2025.129464
-
Control Engineering Practice (IF 5.4)
L. Chen, O. Bernard, G. Bastin and P. Angelov, Hybrid Modelling of Biotechnological Processes using Neural Networks, vol. 8(7):821-827, 2000.
P. Angelov, X. Gu, D. Kangin, Empirical data analytics, vol. 32(12): 1261-1284, Dec. 2017; top20 most downloadable article
P. Angelov, P. Sadeghi‐Tehran, Look‐a‐Like: A Fast Content‐Based Image Retrieval Approach Using a Hierarchically Nested Dynamically Evolving Image Clouds and Recursive Local Data Density, vol. 32(1): 82-103, 2017.
-
Neural Computation and Applications (IF 4.8)
P. Angelov, E. A. Soares, Detecting and Learning from Unknown by Extremely Weak Supervision: eXploratory Classifier (xClass), vol.33 (22), 15145-15157, November, 2021.
-
Bioinformatics (IF 4.4)
J. Trevisan, P. P. Angelov, A. D. Scott, P. L. Carmichael, F. L. Martin, IRootLab: a free and open-source MAT-LAB toolbox for vibrational biospectroscopy data analysis, vol. 29 (8): 1095-1097, 2013.
-
Analyst (IF 4.2)
J. Trevisan, P. P. Angelov, P. L. Carmichael, A. D. Scott and F. L. Martin, Extracting biological information with computational analysis of Fourier transform infrared (FTIR) bio-spectroscopy datasets: current practices to future perspectives, Analyst (IF 4.62), 137: 3202-3215, 2012.
X. Gu, P. Angelov, C. Zhang, P. Atkinson, A massively parallel deep rule-based ensemble classifier for remote sensing scenes, vol. 15 (3), 345-349, 2018.
and others. Also, some selected
Research monographs:
-
P. Angelov, X. Gu, Empirical Approach to Machine Learning, Springer International Publishing, Dec. 2018, ISBN 978-3-030-02384-3.
-
P. Angelov, Autonomous Learning Systems: From Data Streams to Knowledge in Real time, John Willey and Sons, Dec.2012, ISBN: 978-1-1199-5152-0.
Edited Books:
-
P. Angelov (Ed.), Handbook in Computational Intelligence, World Scientific, 2 volumes, 870pp., 2016, ISBN: 978-0-470-28719-4. 2nd edition: P. Angelov (Ed.), Handbook in Computer Learning and Intelligence, World Scientific, 2 volumes, 1056pp., DOI: 10.1142/12498, Sept. 2022
-
P. Angelov (Ed.), Sense and Avoid in UAS: Research and Applications, 385pp., John Willey and Sons, May 2012, ISBN: 978-0-470-97975-4; (in addition to the English edition also in Chinese).
-
P. Angelov, D. Filev and N. Kasabov (Eds.), Evolving Intelligent Systems: Methodology and Applications, 484 pp., John Wiley and Sons, April 2010, ISBN: 978-0-470-28719-4.
Granted patents:
-
P. Angelov, Machine Learning (Collaborative Systems), priority date 23 Oct 2007, granted 21 August 2012, USA patent 8250004.
-
P. Angelov, Anomalous System State Identification, priority date 15 May 2012, GB1208542.9, granted 12 July 2016, USA patent 9390265.