top of page
Publications by topic of research plus other publications
The main publications per research topic are grouped below (reference numbers are as per the list at the bottom of this web page; the symbol ‘*’ denotes a research topics introduced by Prof. Angelov; the symbol ‘†’ denotes a research topic for which Dr. Angelov is one of the first few who introduced it world-wide):
  • * Interpretable deep rule-base classifiers [1]-[4]

  • * Empirical data analytics, [5]-[7], [59]

    • * Empirical fuzzy sets and systems [8], AnYa type fuzzy systems [56]

  • † Autonomous learning systems [9], [10], [58]

    • * Self-evolving fuzzy rule-based classifiers [11]-[13]

    • † Dynamically self-evolving predictive neuro-fuzzy models [14]-[20], [58], [63]

    • * Autonomous fault detection & identification/anomaly detection [21]-[23]

    • † Dynamically evolving clustering [24]-[26]

    • * Dynamically self-evolving controllers [27]-[29]

    • Drift detection, stability, correntropy analysis, [30]-[32]

  • * New direction aware distance metric [33]

  • Applications:

    • * Evolving human behaviour modelling [34]-[36]

    • Botnets detection [37]

    • Data fusion [38]

    • Image processing [1]-[4], [39]-[44], [54]

    • Bioinformatics/spectroscopy classification/biomarkers identification [45]-[49]

    • * eSensor (self-calibrating intelligent sensors) [50]-[51]

    • Autonomous vehicles [52]-[54]     

    • Rail (VideoAnalytics solution to Platform-Train Interfaces for faster, safer boarding) [55]

 

Earlier works (pre-1998):

  • Optimal control under uncertainties (of fuzzy type) [57]

  • Fuzzy mathematical programming under uncertainties (of fuzzy type) [60], [68]

  • Evolutionary synthesis of HVAC [61]-[62]

  • Evolutionary design of fuzzy rule-based systems [64]-[65]

  • Optimisation in an intuitionistic fuzzy environment [66]

  • Modelling biotechnological processes using neural networks [67]

 

References used above:

 

  1. X. Gu, P. Angelov, C. Zhang, P. Atkinson, A massively parallel deep rule-based ensemble classifier for remote sensing scenes, IEEE Geoscience and Remote Sensing Letters (IF 2.761), 15(3): 345-349, 2018

  2. P. Angelov, X. Gu, MICE: Multi-layer multi-model images classifier ensemble, 2017 IEEE International Conference on Cybernetics, CYBCONF2017, Exeter, UK, 2017, pp. 1-8, DOI: 10.1109/CYBConf.2017.7985788.

  3. P. Angelov, X. Gu, A Cascade of Deep Learning Fuzzy Rule-based Image Classifier and SVM, 2017 IEEE Intern. Conf. on Systems, Man, and Cybernetics (SMC2017), Banff, Canada, pp.746-751.

  4. P. Angelov, X. Gu, Deep rule-based classifier with human-level performance and characteristics, Information Sciences (IF 4.832), vol. 463-464, pp. 196-213, October 2018.

  5. P. Angelov, X. Gu, J. Principe, A generalized methodology for data analysis, IEEE Transactions on Cybernetics (IF 7.384), DOI: 10.1109/TCYB.2017.2753880, 2017.

  6. P. Angelov, X.  Gu, D. Kangin, Empirical data analytics, International Journal of Intelligent Systems (IF 2.929), 32(12): 1261-1284, Dec. 2017.

  7. P. Angelov, X. Gu, D. Kangin, J. Principe, Empirical data analysis: a new tool for data analytics, IEEE International Conference on Systems, Man, and Cybernetics (SMC2016), Budapest, Hungary 2016, pp. 000052 – 000059, DOI: 10.1109/SMC.2016.7844219.

  8. P. Angelov, X. Gu, Empirical Fuzzy Sets, International Journal of Intelligent Systems (IF 2.929), 33(2): 362-395, Feb.2018.

  9. P. Angelov, Autonomous Learning Systems: From Data Streams to Knowledge in Real time, John Willey and Sons, Dec.2012, ISBN: 978-1-1199-5152-0.

  10. P. Angelov, Machine Learning (Collaborative Systems), USA patent 8250004, granted 21 August 2012; priority date: 1 Nov. 2006; international filing date 23 Oct. 2007.

  11. *P. Angelov, X. Zhou, Evolving Fuzzy-Rule-based Classifiers from Data Streams, IEEE Transactions on Fuzzy Systems (IF 7.671), ISSN 1063-6706, 16(6): 1462-1475, 2008.

  12. P. Angelov, E. Lughofer and X. Zhou, Evolving Fuzzy Classifiers with Different Architectures, Fuzzy Sets and Systems (IF 2.718), 159, 3160-3182, 2008.

  13. P. Angelov, X. Zhou, F. Klawonn, Evolving Fuzzy Rule-based Classifiers, Proc. 2007 IEEE International Conference on Computational Intelligence Applications for Signal and Image Processing, April 1-5, 2007, Hawaii, USA, pp.220-225, IEEE Xplore.

  14. P. Angelov, R. Buswell, Evolving Rule-based Models: A Tool for Intelligent Adaptation, Proc. 9th IFSA World Congress, Vancouver, BC, Canada, 25-28 July 2001, pp.1062-1067.

  15. P. P. Angelov, Evolving Rule-based Models: A Tool for Design of Flexible Adaptive Systems, Springer-Verlag, Heidelberg, Germany, 2002, 215 pp., ISBN 3-7908-1457-1

  16. P. Angelov, R. Buswell, Identification of Evolving Rule-based Models, IEEE Transaction on Fuzzy Systems (IF 7.671), 10 (5): 667-677, 2002.

  17. P. Angelov, D. Filev, An Approach to On-line Identification of Takagi-Sugeno Fuzzy Models, IEEE Transactions on System, Man, and Cybernetics, part B – Cybernetics (IF 7.384), 34 (1): 484-498, 2004.

  18. P. Angelov, D. Filev, Simpl_eTS: A Simplified Method for Learning Evolving Takagi-Sugeno Fuzzy Models, Proc. The 2005 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2015, Reno, USA, 22-25 May 2005, ISSN 0-7803-9158-6/05, pp.1068-1073.

  19. *P. Angelov, X. Zhou, Evolving Fuzzy Systems from Data Streams in Real-Time, Proc. 2006 International Symposium on Evolving Fuzzy Systems, 7-9 September, 2006, Ambleside, UK, IEEE Press, ISBN 0-7803-9719-3, pp.29-35.

  20. P. Angelov, Evolving Takagi-Sugeno Fuzzy Systems from Data Streams (eTS+), In Evolving Intelligent Systems: Methodology and Applications (Angelov P., D. Filev, N. Kasabov Eds.), John Willey and Sons, pp. 21-50, ISBN: 978-0-470-28719-4, Feb. 2010.

  21. P. Angelov, Anomalous System State Identification, USA patent 9390265, granted 12 July 2016; priority date 15 May 2012, GB1208542.9.

  22. B. S. J. Costa, P. Angelov, L. A. Guedes, Fully unsupervised fault detection and identification based on recursive density estimation and self-evolving cloud-based classifier, Neurocomputing (IF 2.0), 150A: 289-303, 2015.

  23. B. S. J. Costa, P. P. Angelov, L. A. Guedes, Real-Time Fault Detection using Recursive Density Estimation, Journal of Control, Automation and Electrical Systems, ISSN: 2195-3880, 25 (4): 428-437, 2014.

  24. P. Angelov, An approach for fuzzy rule-base adaptation using on-line clustering, International Journal of Approximate Reasoning (IF 2.845), 35 (3): 275-289, 2004.

  25. R. D. Baruah, P. Angelov, DEC: Dynamically Evolving Clustering Autonomous and its Application to Structure Identification of Evolving Fuzzy Models, IEEE Transactions on Cybernetics (IF 7.384), 44(9): 1619-1631, 2013.

  26. X. Gu, P. Angelov, D. Kangin, J. Principe, Self-organised direction aware data partitioning algorithm, Information Sciences (IF 4.832), 423: 80-95, Jan. 2018.

  27. P. P. Angelov, A Fuzzy Controller with Evolving Structure, Information Sciences (IF 4.832), 161: 21-35, 2004.

  28. P. Sadeghi-Tehran, A. B. Cara, P. Angelov, H. Pomares, I. Rojas, A. Prieto, Self-Evolving Parameter-free Rule-based Controller, 2012 World Congress on Computational Intelligence, WCCI2012, 10-15 June 2012, Brisbane, Australia, pp.754-761, ISBN 978-1-4673-1489-3.

  29. P. Angelov, I Skrjanc, S. Blazic, A Robust Evolving Cloud-based Controller, In Springer Hand-book on Computational Intelligence, (J. Kacprzyk and W. Pedrzyc eds.), part G, chapter 75, pp. 1435-1449, 2015, ISBN 978-3-662-43504-5, DOI: 10.1007/978-3-662-43505-2_75.

  30. E. Lughofer, P. Angelov, Handling Drifts and Shifts in On-line Data Streams with Evolving Fuzzy Systems, Applied Soft Computing (IF 3.811), 11(2): 2057-2068, 2011.

  31. H.-J. Rong, P. Angelov, X. Gu, J. Bai, Stability of Evolving Fuzzy Systems based on Data Clouds, IEEE Transactions on Fuzzy Systems (IF 7.671), DOI: 10.1109/TFUZZ.2018.2793258, published online 15 Jan. 2018.

  32. † R. Bao, H. Rong, P. Angelov, B. Chen, P. Wong, Correntropy-Based Evolving Fuzzy Neural System, IEEE Transactions on Fuzzy Systems (IF 7.671), DOI:10.1109/TFUZZ.2017.2719619, June 2017.

  33. X. Gu, P. Angelov, D. Kangin, J. Principe, A new type of distance metric and its use for clustering, Evolving Systems, 8(3): 167-177, 2017.

  34. J. Iglesias, P. Angelov, A. Ledezma, A. Sanchis, Creating evolving user behavior profiles automatically, IEEE Transactions on Knowledge Data Engineering (IF 3.438), 24(5): 854-867, 2012.

  35. J. A. Iglesias, P. Angelov, A. Ledezma, A. Sanchis, Human Activity Recognition based on Evolving Fuzzy Systems, International Journal of Neural Systems (IF 6.507), 20(5): 355-364, 2010.

  36. J. A. Iglesias, P. Angelov, A. Ledezma, A. Sanchis, Evolving Classification of Agents' Behaviours: A General Approach, Evolving Systems, ISSN 1868-6478, 1(3): 161-171, 2010.

  37. † P. Angelov, R. Bruncak, D Hutchison, S Simpson, P Smith, System for identifying illegitimate communications between computers by comparing evolution of data flows, USA patent 9847924 (B2), granted 19 December 2017, priority date 2 April 2015.

  38. P. Angelov, R. Yager, Density-based Averaging - a new Operator for Data Fusion, Information Sciences (IF 4.832), 222: 163-174, 2013.

  39. P. Angelov, P. Sadeghi‐Tehran, Look‐a‐Like: A Fast Content‐Based Image Retrieval Approach Using a Hierarchically Nested Dynamically Evolving Image Clouds and Recursive Local Data Density, International Journal of Intelligent Systems (IF 2.929), 32(1): 82-103, 2017.

  40. P. Angelov, P. Sadeghi-Tehran, Data Structuring and Searching Method and Apparatus, GB1417807.3, priority date 8 October 2014.

  41. A. Antoniou, P. Angelov, A general purpose intelligent surveillance system for mobile devices using deep learning, International Joint Conference on Neural Networks (IJCNN-2016), Vancouver Canada, 2016, pp.2879-2886.

  42. G. Morris, P. P. Angelov, Edge flow, 2015 IEEE International Conference on Systems, Man and Cybernetics, SMC 2015, Hong Kong, pp.1942-1948, DOI 10.1109/SMC.2015.339.

  43. G. Morris, P. Angelov, Real-time novelty detection in video using background subtraction techniques: State of the art a practical review, Proc. IEEE International Conference on Systems, Man and Cybernetics, SMC2014, 5-8 October 2014, San Diego, USA, pp.537-543.

  44. P. Angelov, P. Sadeghi-Tehran, R. Ramezani, An Approach to Autonomous Novelty Detection and Object Tracking in Video Stream, International Journal of Intelligent Systems (IF 2.929), 26(3): 189-205, 2011.

  45. J. Trevisan, P. P. Angelov, A. D. Scott, P. L. Carmichael, F. L. Martin, IRootLab: a free and open-source MATLAB toolbox for vibrational biospectroscopy data analysis, Bioinformatics (IF 7.307),  29 (8): 1095-1097, 2013.

  46. J. Trevisan, P. P. Angelov, P. L. Carmichael, A. D. Scott and F. L. Martin, A computational protocol and software implementation (as a MATLAB application) for biomarker identification in infrared spectroscopy datasets, Nature Protocols (IF 10.03) Exchange, May 2010, DOI: 10.1038/nprot.2010.97.

  47. † J. Trevisan, P. P. Angelov, P. L. Carmichael, A. D. Scott and F. L. Martin, Extracting biological information with computational analysis of Fourier transform infrared (FTIR) bio-spectroscopy datasets: current practices to future perspectives, Analyst (IF 4.107), 137: 3202-3215, 2012.

  48. † J. G. Kelly, P. Angelov, J. Trevisan, N. Vlachopoulou, E. Paraskevaidis, P.L. Martin-Hirsch, and M.L. Martin, Robust classification of low-grade cervical cytology following analysis with ATR-FTIR spectroscopy and subsequent application of self-learning classifier eClass, Journal of Analytical and Bio-analytical Chemistry (IF 3.578), 398(5): 2191-2201, 2010.

  49. J. Kelly, P. Angelov, M. J. Walsh, H. M. Pollock, M. A. Pitt, P. L. Martin-Hirsch and F. Martin, A Self-Learning Fuzzy Classifier with Feature Selection for Intelligent Interrogation of mid-IR Spectroscopy Data Derived from Different Categories of Exfoliative Cervical Cytology, Inter-national Journal on Computational Intelligence Research, ISSN 0974-1259, 4(4): 392–401, 2008.

  50. P. Angelov, A. Kordon, Adaptive Inferential Sensors based on Evolving Fuzzy Models: An Industrial Case Study, IEEE Transactions on Systems, Man and Cybernetics-B (IF 7.384), 40(2): 529-539, 2010.

  51. J. J. Macias-Hernandez, P. Angelov, X. Zhou, Soft Sensor for Predicting Crude Oil Distillation Side Streams using Takagi Sugeno Evolving Fuzzy Models, Proc. 2007 IEEE International Conference on Systems, Man, and Cybernetics, SMC2007, 7-10 October, 2007, Montreal, Canada, ISBN 1-4244-0991-8/07, pp.3305-3310, IEEE Xplore.

  52. X. Zhou, P. Angelov, An Approach to Autonomous Self-localization of a Mobile Robot in Completely Unknown Environment using Evolving Fuzzy Rule-based Classifier, Proc. 2007 IEEE International Conference on Computational Intelligence Applications for Defense and Security, April 1-5, 2007, Honolulu, Hawaii, USA, pp.131-138, IEEE Xplore.

  53. P. Sadeghi-Tehran, S. Behera, P. Angelov, J. Andreu, Autonomous Visual Self-Localization in Completely Unknown Environment, 2012 IEEE Conference on Evolving and Adaptive Intelligent Systems, EAIS-2012, 17-18 May 2012, Madrid, Spain, pp.90-95, ISBN978-1-4673-1727-6.

  54. P. Angelov, P. Sadeghi-Tehran, C. Clarke, AURORA: autonomous real-time on-board video analytics, Neural Computing and Applications (IF 2.505), 28(5): 855-865, 2017.

  55. P. Angelov, G. Morris, H. Parkinson, Transport Information Systems, PCT/GB2017/053586, filing date 28 November 2017; GB1620099.0, priority date 28 November 2016.

  56. P. Angelov, R. Yager, A New Type of Simplified Fuzzy Rule-based Systems, International Journal of General Systems (IF 1.637), 41(2): 163-185, 2012.

  57. D. Filev, P. Angelov, Fuzzy Optimal Control, Fuzzy Sets and Systems (IF 2.718), 47(2): 151-156, 1992.

  58. P. Angelov, X. Gu, J. Principe, Autonomous learning multi-model systems from data streams, IEEE Transactions on Fuzzy Systems (IF 7.671), DOI:10.1109/TFUZZ.2017.2769039, 2017.

  59. P. Angelov, Outside the box: An Alternative Analytics Framework, Journal of Automation, Mobile Robotics and Intelligent Systems, 8(2):29-35, 2014.

  60. P. Angelov, L. Kuncheva, About Analytical Solving Fuzzy Mathematical Programming Problem, Proc. International Conference on Mathematical Modelling and Computing'93 (S. Markov Ed.), Sozopol, Bulgaria, 14-17 September 1993, pp.109-112.

  61. P.    Angelov, Y. Zhang, J. Wright, R. Buswell, V. Hanby, Automatic Design Synthesis and Optimization of Component-based Systems by Evolutionary Algorithms, In: Lecture Notes in Computer Science 2724 Genetic and Evolutionary Computation (E. Cantu-Paz et. al Eds.): Springer-Verlag, 2003, pp.1938-1950.

  62. J. A. Wright, Y. Zhang, P. P. Angelov, R. A. Buswell and V. I. Hanby, Evolutionary Synthesis of HVAC System Configurations: Algorithm Development, International Journal of HVAC Research, 14 (1): 33-55, 2008.

  63. P. Angelov, Fuzzily Connected Multi-Model Systems Evolving Autonomously from Data Streams, IEEE Transactions on Systems, Man, and Cybernetics - part B, Cybernetics (IF 7.384), 41(4): 898-910, 2011.

  64. P. Angelov, R. Buswell, Automatic Generation of Fuzzy Rule-based Models from Data by Genetic Algorithms, Information Sciences (IF 4.832), 150 (1/2): 17-31, 2003.

  65. P. Angelov, An Evolutionary Approach to Fuzzy Rule-based Model Synthesis using Rules Indices, Fuzzy Sets and Systems (IF 2.718), 137 (3): 325-338, 2003.

  66. P. Angelov, Optimization in an Intuitionistic Fuzzy Environment, Fuzzy Sets and Systems (IF 2.718), 68: 301-306, 1997.

  67. † L. Chen, O. Bernard, G. Bastin and P. Angelov, Hybrid Modelling of Biotechnological Processes using Neural Networks, Control Engineering Practice (IF 2.602), 8(7):821-827, 2000.

  68. P. Angelov, A Parameterized Generalization of Fuzzy Mathematical Programming Problem, Proc. 5th IFSA World Congress, Seoul, Korea, July 4-9, 1993, v.1, pp.612-615.

bottom of page